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The Advanced GIS Lab at the Center for Information Systems and Technology (CISAT) focuses on advanced spatial analysis and the research and
development of advanced GIS solutions. Led by Clinical Associate Professor Dr. Brian Hilton, the Lab stresses a transdisciplinary approach to knowledge,
research, and problem-solving using core ideas, methods, and concepts from several disciplines to critically examine a broad range of real-world problems.
This transdisciplinary approach, a hallmark of Claremont Graduate University's (CGU) research philosophy, extends the scope of interdisciplinary or
multidisciplinary scholarship by traversing the range of traditional disciplines for the advancement of knowledge and solutions to the world's most pressing
issues.

Currently, the Lab and its associated students and faculty are the of GIS technol to improve health, better
understand road transportation safety, support humanitarian efforts, and examine ecosystem services.

In addition, the Lab is an Esri Development Center (EDC). The EDC program was created to confer special recognition and status to university
departments worldwide that have exemplary programs focused on educating students in the design and development of GIS applications using Esri's
geospatial technologies. As an inaugural EDC, CISAT is a unique resource for CGU that: provides students and faculty with the capabilities to teach and
develop state-of-the-art applications in the Lab; provides Esri training focused on GIS and related technologies; and offers students special recognition
through an annual achievement award.

Founded in 1925, Claremont Graduate University is an independent graduate-level university. CGU is located in the city of Claremont, California, 35

miles east of Los Angeles. The CGU community is characterized by its unusual diversity, collegiality, and environmental beauty.
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Agenda

* Review of Three Research Projects / Use Cases

e Optimization Algorithm for Spatially Constrained Distributed Energy Resource
Placement

* Evolving Supply Chains and Local Freight Flows: GIS Analysis of Minnesota
Cereal Grain Movement

e Stop-and-Frisk Policy from a Quantitative and Spatial Perspective

* Hands-On Demonstration (Sharing Economy Examples)
* |Insights for ArcGIS



Agenda

 Locational Big Data and Analytics has created a need for the efficient
manipulation and scalable analysis of spatial big data on disparate,
and distributed, datasets. As a result, this has opened a number of
research areas such as:

* Developing capabilities for accessing, formatting, and combining spatial big
data in ways that enable it to be easily consumed,;

* Developing methodologies to derive insight into spatial big data for inferential
understanding and decision making;

* Developing teaching resources to better understand the use of data
manipulation techniques, spatial statistics, and spatial data-mining tasks
related to spatial big data; and

* Developing novel spatial and spatiotemporal methods that can take
advantage of newly emerging data-intensive computational resources.



Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

* Domain — Energy Informatics

e Research Question — “Where are the optimal locations for the
placement of Distributed Energy Resources, specifically, lithium-ion
(Li-ion) batteries on the electricity grid?”



Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement
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Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

* Deploying Distributed Energy Resources in a widespread, efficient,
and cost-effective manner requires complex integration with the
existing electricity grid.

* The global scale-up of lithium-ion (Li-ion) batteries is enabling cost-
effective energy storage systems for electric utility use.

* Policy incentives have increased solar panel adoption (grid-
connected photovoltaic energy (PV) systems ) — California ranks first
among all states in number of solar PV systems installed.

* Research can identify and resolve the challenges of PV system
integration, facilitating the transition to a smarter grid.



Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

* Research steps:

1. Understanding Solar Panel Adoption across three main customer
types: Residential, Commercial, and Industrial.

2. Development of GIS-based planning algorithm(s) for the optimal
placement of new DERs (Li-ion batteries) given the spatial
constraints of the existing electricity grid.



Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

e Data Provider

* “The LA County GIS Data Portal is the place to search for GIS data created,
maintained, licensed, and stored by the County of Los Angeles.”

GIS Data for LA County

;@; Los Angeles County GIS Data Portal

come

Login
Register
Log in
Entries RSS
Comments RSS
WordPress.org

Categories
GIS Applications(17)
»GIS Data by Theme(287)
»GIS Data by Source(281)
»GIS Data by Cost(247)
Reference(4)
Announcements(11)
GIS Map Services(2)

Recent Releases
DPSS Toy Loan Center Locations June
9,2017
2017 Total Solar Eclipse Map and
Shapefiles May 16, 2017
Election Precincts May 15, 2017
Workforce Regions May 11, 2017
CalEnviroScreen 3.0 April 26, 2017

Popular Data
GIS Data Viewers
29,204 views
Data Catalog
25,216 views

Posts Comments

solar

LARIAC ¥ Instructions ¥ Feedback

2017 Total Solar Eclipse Map and Shapefiles

Map of the solar eclips

In case you are getting excited about the upcoming Solar Eclipse, NASA has provided a set of shapefiles that will help you determine the exact coverage where
you are. Or figure out where to hide :).

There are a couple of different versions — both small and large [...]

May 16th, 2017 | Tags: Eclipse, NASA | Category: Free, Hazards | Leave a comment

Solar Data Summarized to 2010 Parcels

With the release of the Local Roll to the public (see this data entry) we are now able to release the dataset that supports the LA County Solar Map
(http://solarmap.lacounty.gov).

The Solar Map Database contains the results of the 2006 solar model (for details see this data [...]

April 7th, 2015 | Tags: Parcels, Solar, solar map | Category: Chief Information Office, Environmental, Free | One comment
Solar Radiation Model (2006)
Solar Insolation (global radiation) for the County of Los Angeles developed from information captured in 2006 by the LAR-IAC program.

This data was created through the Area Solar Radiation function in ESRI's ArcGIS Desktop. For more details about this function, view the ESRI help file. That
function creates four output files:

[.]

December 23rd, 2010 | Category: Chief Information Office, Environmental, LARIAC, Licensed | Leave a comment



Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

* Solar Installation Data Description
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Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

* Solar PV Potentlal Data Descrlptlon




Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

e Solar Installation and Solar PV Potential Data
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Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

* Research Step (1)

e Creating a Predictive Model for Residential Solar Panel Adoption
* Los Angeles County: Residential Parcels = 1,868,519 out of 2,392,100 (78%)

* Dependent variable:
Likelihood of a household adopting solar energy panels

* Independent variables:
(1) parcel information, such as: parcel age, parcel value, etc.
(2) customer demographics, such as: household income, household size, etc.
(3) expenditure data, such as: electricity usage, mortgage value, etc.



Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

* Research Step (1)

* The results of the Two-Class Logistic Regression (Azure Machine
Learning) indicated that six factors emerged as significant predictors
of solar adoption:

e parcel age,

* average household size, — | =T ==
 total area suitable for solar roof top, | |

* total building area square feet, e wo ©

* average household income, and s

* average home value




Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

* Future Work / Analysis
* Research Step (2)
* Development of GIS-based planning algorithm(s) for the optimal placement of new DERs

e Data Provider

* “The Electric Power Research Institute, or EPRI conducts research on |ssues reIated to
the electric power industry.” " 5 == MR ,.

* Devise a methodology for organizing our disparate datasets...



Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement
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Optimization Algorithm for Spatially Constrained
Distributed Energy Resource Placement

Developing capabilities for accessing, formatting, and combining
spatial big data in ways that enable it to be easily consumed.

Feature Geo Analytics can power systems
. . . . that dt L lysis i
* ArcGIS GeoAnalytics Server BREENCIERETEHENRIEY ctrivered ont scolebie mmronment It
designed for analysts, researchers, and
developers.
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Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

* Domain — Logistics / Freight Network Planning

e Research Question — “How can we better understand commodity
flows for economic development, for freight policy analysis, and
transportation infrastructure impacts?”



Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

* In Minnesota, technological and economic shifts in the grain supply
chain have altered the way grain producers and sellers navigate their
local freight network.

* In particular, many producers have been increasing their personal
trucking capacity and taking longer trips to intermodal and domestic
market options.

* This logistical reshaping of local grain supply chains pressure
transportation officials to reconsider the consequences for road
infrastructure and congested freight corridors.



Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

e Data Provider

* Quetica, a Minnesota-based, supply chain management company that uses
commodity flow analysis to optimize freight network planning.

queteica

N

Innovative, Dats-_Driven
Freight Network Planning.

Optimizing networks to identify
constraints, prioritize investments
and promote economic growth.




Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

* Freight Data Description

 The Quetica sample dataset included cereal grain shipments, via truck,
including shipment weight, for Midwest U.S. counties in 2014:

e 257,006 - Midwest U.S. shipments - total tons 764,848,291
e 15,920 - MN-related (internal/external) shipments - total tons 79,638,868
* 4,489 - MN-only shipments (internal/internal) - total tons 66,789,589



Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

* Network Data Description
e (87 MN counties) * (87 MN counties) = 7,569 total O-D routes
* Appended shipment data to these O-D routes (4,489 routes)
* Merged these O-D routes into one “flattened” dataset
* Joined the merged O-D routes with 30,389 MN road segments

* Resultant layer contains 30,389 road segments containing road usage and

shipment weight totals
P g 5 N |




Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

Origins, Destinations, and O-D Routes

Origins (All MN Counties)
Destinations (All MN Counties)
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Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement
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Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

Shipping Weight

Origins (All MN Counties)
Destinations (All MN Counties)
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Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

Not Significant
Hot Spot - 90% Confidence

Hot Spot - 95% Confidence
=== Hot Spot - 99% Confidence

Road Usage (Hot Spots)

Origins (All MN Counties)
Destinations (All MN Counties)
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Sources: Esri, HERE, Delorme, Intermap, incement P Corp., GEBCO, USGS, FAO,
NPS, NRCAN, GeoBsase, IGN, Kadaster NL, Crdnance Surveyr gar__irJapsn. METI,
Esri China {Hong Xong), swisstopo, MapmyIndis, ® OpenStreetMap contributors, and
the GIS User Ccmmunityv.h‘ o g




® OD with Shipments
OD Routes - Shipping Weight (Hot Spots)
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Esri China {Hong Xong), swisstopo, MapmyIndis, ® OpenStreetMap contributors, and
the GIS UserCcmmuniiym‘ o g




Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

* Future Work / Analysis

» Additional Industry Clusters (e.g., Agricultural Products, Animal Products,
Mining Products, etc.) and Commodity Shipment Types (e.g., Processed Food
Products, Dimension Stone, etc.)

* More granular unit of analysis (1,031 MN zip codes) * (1,031 MN zip codes) =
1,062,961 total O-D routes

* Devise streamlined, and faster, data processing workflows...



Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

* Issue / Need

Run analytics:

- against data that is too big for a single desktop machine
- hundreds of millions of 911 calls accumulated over years

- billions of observations of ship movements ingested through GeoEvent

- designed to gain insight into both spatial and temporal patterns

- against massive collections in a scalable manner

- and meet time constraints
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Evolving Supply Chains and Local Freight Flows:
GIS Analysis of Minnesota Cereal Grain Movement

Developing novel spatial and spatiotemporal methods that can take
advantage of newly emerging data-intensive computational resources.

* ArcGIS Enterprise
e XSEDE and GIS (http://www.gisandbox.org)

SDS SAN DIEGO
SUPERCOMPUTER CENTER

- XSEDE

Extreme Science and Engineering
Discovery Environment



http://www.gisandbox.org/

Stop-and-Frisk Policy from a Quantitative
and Spatial Perspective

* Domain — Spatial Justice / Spatial Equality

* Research Question — “Does the race or ethnicity of an individual being
stopped by a police officer have a significant role in an individual
being frisked and by how much?”



Stop-and-Frisk Policy from a Quantitative
and Spatial Perspective

* Policy encourages police officers to stop people they deem
suspicious, question them, and to frisk them for drugs, contraband, or
weapons if illegal activities are suspected.

* Reasonable suspicion is the belief that someone poses a dangers, has
committed a crime, or is about to commit a crime.

e Race cannot be a factor for the frisk.

* The New York City Stop-and-Frisk Policy is an example of how a policy
intended to keep the public safe, now has a negative public
perspective.



Stop-and-Frisk Policy from a Quantitative
and Spatial Perspective

e Data Provider

e Stop-and-Frisk data records are available from the NYPD Stop, Question, and
Frisk data b as e. NVYE | New York City Police Department 311 | Search all NYC.gov websites

New York's Finest Italiano » Translate | ¥  Text-Size

1) About Bureaus Services Stats Media Careers Search Q

Crime Statistics Traffic Data Reports, Analyses

Stop, Question and Frisk Data

CPR/AED Training Data records from the NYPD Stop, Question, and Frisk database are available for download from
the links provided below. Data is made available in CSV format and has been stored in a zip file
archive. After downloading, the zip archive must be extracted to access the files

Civil Immigration
Detainers

Criminal Court Data for the years 2003 through 2016 are provided in separate zip archives

Summonses
* 2003 CSV zip archive
* 2004 CSV zip archive
Crime and Enforcement * 2005 CSV zip archive
Activity Reports * 2006 CSV zip archive

* 2007 CSV zip archive
* 2008 CSV zip archive
Deployment Law + 2009 CSV zip archive
* 2010 CSV zip archive
* 2011 CSV zip archive
Desk Appearance Ticket + 2012 CSV zip archive

Arrest Analysis Data + 2013 CSV zip archive
* 2014 CSV zip archive

* 2015 CSV zip archive
Domestic Violence * 2016 CSV zip archive

Reports Record layouts and code books for each year's data are recorded in separate Excel spreadsheet
format files. The most recent year's spreadsheet, as well as a zip archive containing all years'
spreadsheets, are downloadable via the links below. The documentation archive may also contain

Firearms Discharge statistical notes for the databases in text file format.

Reports . - § e e
» The most recent NYPD Stop, Question, and Frisk database file specifications

* SQF file documentation zip (all years)



Stop-and-Frisk Policy from a Quantitative
and Spatial Perspective

e Stop-and-Frisk Data Description
» 5,162,445 New York City police stops and street interrogations (2002-2016)

Number of NYPD Stop-and-Frisks, 2002-2016
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Stop-and-Frisk Policy from a Quantitative
and Spatial Perspective

e Stop-and-Frisk
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Stop-and-Frisk Policy from a Quantitative
and Spatial Perspective

e Stop-and-Frisk

* 2014
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Stop-and-Frisk Policy from a Quantitative
and Spatial Perspective

 Black Hispanic
e Stop-and-Frisk
° 20 14 PATTERN

- Mew Hot Spot
.
W Intensifying Hot Spot
Persistent Hot Spot
Dirninishing Hot Spot
Sporadic Hot Spot
Oscillating Hot Spot
Historical Hot Spot

Mew Cold Spot
Consecutive Cold Spot

Consecutive Hot Spot

Emerging Hot Spot Analysis
Spatiotemporal Trends

Intensifying Cold Spot

Persistent Cold Spot

Dirninishing Cold Spot
Sporadic Cold Spot

| Oscillating Cold Spot

Historical Cold Spot

Mo Pattern Detected

ram Lawin

Wayne
Towaco Lincoln
Park Paterson
dgxows Elmwood Park
itville Twp Fairfield Little
Falls Garfield
Athenia
Pine Brook
Cedar Grove
Allwood
Verona
tHanover
Nutley
Montclair
Morehousetown
il 9 Belleville
Northfield Orange
Kearny
So Orange
South Orange Ppe o
n
| Newark
Millburn rvington
ummit
Springfield
Hillside
suntainside
Roselle  Elizabeth Eypuce
= 'IY"

Westfield

aten gsland

Clark Linden
Rahway
Colonia
Iselin Avenel
town .
Woodbridge
n
Fords
Pertf
Amb

South Amboy

Bogota

S Yonkers
Tenafly New

Rochelle

Englewood
el am Manor

Englewood

iffs .
Baychester -
Sands
Point
Port
Washington
Kings
Point
North
Bergen

Oakland Gardens

@l [u] & u]

E & oral Park

Elmont

lorth Valley
Stream

Valley Stream

\Woodmere

Nofth New
HyHe Park

Lattingtow

Glen Cove

Old Brookvi

Greenvale

old
Westbul

Mineola

Hempstead

Free

Oceanside

Bay
Color
Flatlands
tiantic Lon L1‘
Beach Beach

Esri, HERE, Delorme, Mapmylndia, © OpenStreetMap contributors, and the GIS user communit



Stop-and-Frisk Policy from a Quantitative
and Spatial Perspective
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* Future Work / Analysis

e Conduct multiple, spatiotemporal analyses (e.g., across years, specific

months, days, hours, specific attribute types, and combinations of these) for
NYC.

* Examine this issue in other cities (e.g., Philadelphia, Chicago, Los Angeles)

* Devise streamlined, shareable, analytic processing workflows...
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* Issue / Need

* Web-based, data analytics and exploration tool for conducting multiple,
spatiotemporal analyses, of spatial and non-spatial data, where you can:

- i
,:‘?’- Explore, Analyze, lterate \ Visualization and Analysis
"1’

. i Drag-and-Dro
- . J . ? Add Demographic Data

- Visualization
e Share and Communicate

Record and Rerun
Workflows

;‘,. Guided Workflows

=~ Connect to Data Sources Wi '
1]
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Developing methodologies to derive insight into spatial big data for
inferential understanding and decision making.

* ArcGIS Pro

e Emerging Hot Spot Analysis

e Space-Time Cube
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Developing methodologies to derive insight into spatial big data for

* Insights for ArcGIS |

* Web-based ‘

3
* Data analytics tool . NG | g%ﬁ

\ Gouniy Us
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Insights for ArcGIS - Hands-on demo

http://agislab.org

o
AGIS Lab - Innovations Portal <X & Insights X |+
€& ) (0 35.162.232.140/portal/home/index.html C || Q Search W f O =
Home Gallery Map Scene Groups My Content My Organization e Brian ¥ ‘O\ ’
|



http://agislab.org/

Insights for ArcGIS - Hands-on demo

Home Gallery Map Scene Groups My Content My Organization

.. AGIS Lab - Innovations Portal @

Insights for
ArcGlS

&3 EDIT SETTINGS & ADD MEMBERS '4 VIEW STATUS 45 MANAGE LICENSES
Members
Viewing: Current Members - Search for Name... Q
A Mame Username Last Login Level Role Action
amcis_userl amcis_gisl amcis_userl Aug 3, 2017 @ Publisher - -
amcis_userl0 amcis_gis10 amcis_userld Not yet @ Publisher - v
amcis_userll amcis_gis11 amcis_userll Not yet @ Publisher - O -
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Additional Resources

Developing teaching resources to better understand the use of data
manipulation techniques, spatial statistics, and spatial data-mining
tasks related to spatial big data.

 Jupyter Notebooks
* https://developers.arcgis.com/python/
* https://developers.arcgis.com/python/sample-notebooks/

* https://notebooks.esri.com/user/VFVGullU7slf/notebooks/samples/04 gis a
nalysts data scientists/analyze new vork city taxi data.ipynb

* MapD: https://www.mapd.com/



https://developers.arcgis.com/python/
https://developers.arcgis.com/python/sample-notebooks/
https://notebooks.esri.com/user/VFVGul1U7slf/notebooks/samples/04_gis_analysts_data_scientists/analyze_new_york_city_taxi_data.ipynb
https://www.mapd.com/

